Sensenig & Weaver

What Is GeoThermal?

Geothermal heat pumps are similar to ordinary heat pumps, but instead of using heat found in outside air, they rely on the stable, even heat of the earth to provide heating, air conditioning and, in most cases, hot water.

From Montana's -70 degree temperature, to the highest temperature ever recorded in the U.S. - 134 degrees in Death Valley, California, in 1913 - many parts of the country experience seasonal temperature extremes. A few feet below the earth's surface, however, the ground remains at a relatively constant temperature. Although the temperatures vary according to latitude, at six feet underground, temperatures range from 45 degrees to 75 degrees Fahrenheit.

Ever been inside a cave in the summer? The air underground is a constant, cooler temperature than the air outside. During the winter, that same constant cave temperature is warmer than the air outside.

That's the principle behind geothermal heat pumps. In the winter, they move the heat from the earth into your house. In the summer, they pull the heat from your home and discharge it into the ground.

Studies show that approximately 70 percent of the energy used in a geothermal heat pump system is renewable energy from the ground. The earth's constant temperature is what makes geothermal heat pumps one of the most efficient, comfortable, and quiet heating and cooling technologies available today. While they may be more costly to install initially than regular heat pumps, they can produce markedly lower energy bills - 30 percent to 40 percent lower, according to estimates from the U.S. Environmental Protection Agency, who now includes geothermal heat pumps in the types of products rated in the EnergyStar® program. Because they are mechanically simple and outside parts of the system are below ground and protected from the weather, maintenance costs are often lower as well.

Durability

Geothermal heat pumps are durable and require little maintenance. They have fewer mechanical components than other systems, and most of those components are underground, sheltered from the weather. The underground piping used in the system is often guaranteed to last 25 to 50 years and is virtually worry-free. The components inside the house are small and easily accessible for maintenance. Warm and cool air is distributed through ductwork, just as in a regular forced-air system.

Since geothermal systems have no outside condensing units like air conditioners, they are quieter to operate.

How Do They Work?

Remember, a geothermal heat pump doesn't create heat by burning fuel, like a furnace does. Instead, in winter it collects the Earth's natural heat through a series of pipes, called a loop, installed below the surface of the ground or submersed in a pond or lake. Fluid circulates through the loop and carries the heat to the house. There, an electrically driven compressor and a heat exchanger concentrate the Earth's energy and release it inside the home at a higher temperature. Ductwork distributes the heat to different rooms.

In summer, the process is reversed. The underground loop draws excess heat from the house and allows it to be absorbed by the Earth. The system cools your home in the same way that a refrigerator keeps your food cool - by drawing heat from the interior, not by blowing in cold air.

The geothermal loop that is buried underground is typically made of high-density polyethylene, a tough plastic that is extraordinarily durable but which allows heat to pass through efficiently. When installers connect sections of pipe, they heat fuse the joints, making the connections stronger than the pipe itself. The fluid in the loop is water or an environmentally safe antifreeze solution that circulates through the pipes in a closed system.

Another type of geothermal system uses a loop of copper piping placed underground. When refrigerant is pumped through the loop, heat is transferred directly through the copper to the earth.

Types of Loops

Geothermal heat pump systems are usually not do-it-yourself projects. To ensure good results, the piping should be installed by professionals who follow procedures established by the International Ground Source Heat Pump Association (IGSHPA). Designing the system also calls for professional expertise: the length of the loop depends upon a number of factors, including the type of loop configuration used; your home's heating and air conditioning load; local soil conditions and landscaping; and the severity of your climate. Larger homes requiring more heating or air conditioning generally need larger loops than smaller homes. Homes in climates where temperatures are extreme also generally require larger loops.

Vertical Ground Closed Loops

This type of loop is used where there is little yard space, when surface rocks make digging impractical, or when you want to disrupt the landscape as little as possible. Vertical holes 150 to 450 feet deep - much like wells - are bored in the ground, and a single loop of pipe with a U-bend at the bottom is inserted before the hole is backfilled. Each vertical pipe is then connected to a horizontal underground pipe that carries fluid in a closed system to and from the indoor exchange unit. Vertical loops are generally more expensive to install, but require less piping than horizontal loops because the Earth's temperature is more stable farther below the surface.

Information Provided by Consumer Energy Center